Grundwissen Chemie Klasse 10 Camerloher-Gymnasium Freising

Stand September 2018

Räumlicher Bau der Moleküle

Grundlage: Die Orbitaltheorie

Der <u>Raum</u>, in dem sich ein Elektron mit z.B. 99% Wahrscheinlichkeit aufhält, heißt **Orbital**. Ein solches Orbital wird von maximal zwei Elektronen besetzt.

*[Man unterscheidet beispielsweise das kugelförmige s-Orbital, das hantelförmige p-Orbital usw.]

Eine Elektronenpaarbindung (= Atombindung) kommt durch die "Überlappung" zweier Orbitale zustande.

VSEPR/EPA-Modell (Elektronenpaar-Abstoßungsmodell)

Der räumliche Bau von Molekülen wird vom "Platzbedarf" der Orbitale bestimmt. Da sich Elektronen aufgrund ihrer gleichen negativen Ladung abstoßen, ordnen sich diese gemäß dem VSEPR-Modell mit größtmöglichem Abstand zueinander an und dementsprechend verändern sich die Aufenthaltsbereiche der Elektronen in den Elektronenpaarbindungen.

Zwei entscheidende Grundregeln des VSEPR:

- bindende EP mit größtmöglichem Abstand im Raum anordnen
- Mehrfachbindungen werden als Einfachbindung gewertet

Wichtige räumliche Grundstrukturen:

Realstruktur	Mögliches Bindungsverhältnis EP : bind. EP	Bindungs- winkel	Beispiel
tetraedrisch	4:4	ca. 109°	CH ₄
trigonal pyramidal	4:3		NH ₃
trigonal planar	3:3	ca. 120°	BF ₃
gewinkelt	4:2		H ₂ O
	3:2		HNO
linear	2:2	ca. 180°	CO ₂

Polare Bindungen und Dipol

Polare Atombindung

Die **Elektronegativität (EN)** ist die Tendenz eines Atoms, die bindenden Elektronen einer Elektronenpaarbindung an sich zu ziehen. (siehe PSE!)

Daher besitzt das elektronegativere Atom einer Elektronenpaarbindung eine höhere Elektronendichte (= negative Partialladung δ –), das andere Atom dieser Bindung ist im Gegenzug leicht positiv "geladen" (= positive Partialladung δ +)

=> Es liegt also eine **polare Atombindung** vor.

Es gilt: Je größer die Differenz der EN-Werte, desto polarer ist die Atombindung. Ist die EN-Differenz sehr groß (ca. Δ EN > 1,5), liegt eine Ionenbindung vor.

Dipol-Moleküle (kurz: Dipol)

Ein Dipol liegt vor, wenn der Ladungsschwerpunkt der positiven und negativen Partialladungen im Molekül nicht zusammenfällt, die Ladung im Molekül also nicht symmetrisch verteilt ist (z.B. HF oder H₂O).

=> Voraussetzung ist: Das Molekül besitzt mindestens eine polare Atombindung.

Übungsbeispiele:

- 1. Gegeben sind die Moleküle bzw. Molekül-Ionen HBr, HOCl, HCN, CCl₄, Cl_2O , NH_4^+ , C_2Cl_2 , $CO_3^{2^-}$, NF_3 , CHF_3
 - a) Zeichne jeweils eine Strukturformel, die den räumlichen Bau erkennen lässt. Gib auch eine Einschätzung bzgl. der Bindungswinkel ab.
 - b) Benenne die räumliche Struktur der Teilchen.
 - c) Beurteile, ob es sich um Dipole handelt.
- 2. Entscheide bei der Strukturformel des Ibuprofen, welche räumliche Anordnung an den markierten Stellen vorliegt.
- 3. Beurteile die Größe der Bindungswinkel im Formaldehyd und begründe.

O || |-|-

Zwischenmolekulare Kräfte

Zwischenmolekulare Kräfte sind Wechselwirkungen, die zwischen Molekülen (nicht innerhalb eines Moleküls) desselben Stoffs bzw. zwischen Molekülen unterschiedlicher Stoffe wirken.

Van der Waals-Kraft

- schwache elektrostatische Anziehungskraft zwischen unpolaren Molekülen Molekülteilen), (bzw. unpolaren die durch zufällige Elektronenverschiebungen als temporäre bzw. induzierte Dipole auftreten.
- je größer die Oberfläche/Masse des Moleküls, desto stärker sind die wirkenden VdW-Kräfte.

Dipol-Dipol-Kraft

- mittelstarke elektrostatische Anziehungskraft zwischen polaren Molekülen (bzw. Molekülteilen), also permanenten Dipolen.
- je polarer die Moleküle, desto stärker wirkt die Dipol-Dipol-Kraft.

Wasserstoffbrücke

- sserstoffbrucke stärkste elektrostatische Anziehungskraft $| \frac{\delta_-}{O} H \cdots \frac{\delta_-}{O} H |$ permanenter Dipole zwischen einem stark δ_{+H} positiv polarisierten H-Atom (dank dessen Bindung an ein N-, O- oder F-Atom) und einem stark negativ polarisierten N-, O- oder F-Atom mit freiem EP eines benachbarten Dipolmoleküls. (letztlich also Spezialfall einer besonders starken Dipol-Dipol-Kraft)
 - => Bei vergleichbarer Masse gilt: VdW < Dipol-Dipol < H-Brücke

Einfluss auf die Stoffeigenschaften

Siedetemperatur

Je stärker die ZMK, desto mehr Energie muss aufgewendet werden, um die Teilchen voneinander zu trennen, desto höher die Siedetemperatur. Es gilt für Konstitutionsisomere: Je mehr Verzweigungen ein Molekül besitzt, desto kompakter ist seine Molekülform, desto kleiner ist die Oberfläche, desto kleiner sind die VdW-Kräfte und desto niedriger ist die Sdt.

Löslichkeit

Als Faustregel gilt: "Ähnliches löst sich in Ähnlichem". D.h. ein Stoff löst sich dann in einem anderen, wenn zwischen den Teilchen der beiden Stoffe ähnliche zwischenmolekulare Kräfte vorherrschen.

Wichtige Fachbegriffe:

Polar	\leftrightarrow	Unpolar
Hydrophil	\leftrightarrow	Hydrophob
Lipophob	\leftrightarrow	lipophil

Übungsbeispiele: (Wiederhole notfalls zuerst die Abschnitte zu OC!)

- 1. Wasser ist bei Raumtemperatur flüssig. Schwefelwasserstoff (H₂S) ist bei Raumtemperatur gasförmig. Erkläre den Unterschied der Aggregatzustände für die beiden Stoffe auf Teilchenebene.
- 2. Skizziere die Valenzstrichformel der folgenden Verbindungen und entscheide, ob sich diese Verbindung jeweils eher hydrophil oder lipophil ist.
 - a) 2-Methylbutan b) 1,2,2-Trichlorbut-3-en
 - c) Tetrachlormethan d) Hexan-3-on e) 2-Hydroxypropansäure
- 3. Ordne den Edelgasen eine geeignete Siedetemperatur zu und begründe. Helium, Argon, und Xenon -186°C -269°C -108°C
- 4. Sortiere in eine Abfolge der Siedetemperaturen und erläutere deine Überlegung.

Octan

2,2,3,3-Tetramethylbutan

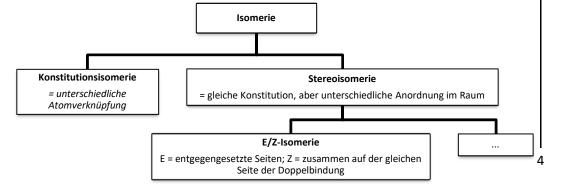
Octanal

Organische Chemie I - Alkane, Alkene, Alkine

Gesättigte Kohlenwasserstoffe: Alkane

Ungesättigte Kohlenwasserstoffe: Alkene (mind. eine Doppelbindung),

Alkine (mind. eine Dreifachbindung)


Homologe Reihe

(= stufenweise Erweiterung um eine CH₂-Gruppe = Methylengruppe —) Methan, Ethan, Propan, Butan, ... siehe ggf. Heft!

IUPAC-Nomenklatur – Teil 1: (ausführliche Regeln ggf. im Heft nachschlagen)

- 1. Längste zusammenhängende Kette bestimmen (mit ggf. möglichst vielen Mehrfachbindungen)
- 2. Seitenketten erkennen und benennen
- 3. Hauptkette nummerieren (möglichst kleine Positionsziffern bei den Mehrfachbindungen und Seitenketten)
- Namen zusammenbauen:
 alphabetische Reihenfolge der Seitenketten mit Positionsnummern Stammname –
 ggf. Endung durch Mehrfachbindungen verändern
- 5. Zusatz:
 - a) Verwende Vorsilben wie Di-, Tri-, Tetra-,... bei gleichen Seitenketten oder mehreren Doppel/Dreifachbindungen; gelten nicht fürs alphabetische Sortieren
 - b) Doppel-/Dreifachbindungen werden als Endung im Stammnamen mit Positionsziffer vermerkt.
 - c) E/Z Vorsilbe: an Doppelbindung hängen die beiden Gruppen mit höherer Priorität (Ordnungszahl beachten) auf gleicher Seite (Z) oder auf unterschiedlichen Seiten der Doppelbindung (E)

Isomerie: Moleküle mit **gleicher Summenformel**, aber **unterschiedlicher Strukturformel**, nennt man **Isomere**. Es gibt unterschiedliche Arten:

Übungsbeispiele:

1. Benenne die folgenden Moleküle nach IUPAC.

$$H_3C$$
— C — CH_3

Handelt es sich bei den beiden Molekülen um Isomere?
 2,3-Dimethylpentan und 3-Methylhexan

Organische Chemie II - Sauerstoffhaltige Kohlenwasserstoffe

Übersicht wichtiger Stoffklassen:

Stoffklasse	Funktionelle Gruppe**	Strukturausschnitt	Suffix
Alk an e			-an
Alk en e	Doppelbindung	_C = C <	-en
Alk in e	Dreifachbindung	- C ≡ C -	-in
Alkoh ol e	Hydroxygruppe	- OH	-ol
Aldehyde	Carbonylgruppe mit benachbartem H-Atom	-c(H	-al
Ket on e	Carbonylgruppe an sekundärem C-Atom	_c=o	-on
Carbon säuren	Carboxygruppe	- c он	-säure
Ester	Estergruppe	-c	-ester

^{**}Funktionelle Gruppen sind Atomgruppen eines Moleküls, die die Stoffeigenschaften und das Reaktionsverhalten einer Verbindung maßgeblich bestimmen.

Die **homologe Reihe** entwickelt sich analog zu den Alkanen, Alkenen, Alkinen:

Methanol, Ethanol, ...

Methanal, Ethanal, ...

! Propanon, Butanon,...

Methansäure, Ethansäure,...

IUPAC-Nomenklatur – Teil 2:

1. Finde die **längste Kette mit der funktionellen Gruppe der höchsten Priorität**. *Carboxy > Carbonyl > Hydroxy > Doppelbdg. > Dreifachbdg.*

Aldehyd > Keton

2. Identifiziere daran gebundene Seitengruppen und weitere funktionelle Gruppen.

- 3. Nummeriere so, dass die fkt. Gruppe der höchsten Priorität **die niedrigste Positionsziffer** erhält bzw. insgesamt möglichst niedrige Positionsziffern entstehen.
- 4. Die **Länge der Hauptkette bestimmt den Stammnamen** mit der entsprechenden Endung für die funktionelle Gruppe.
- 5. Ergänze die anderen Substituenten <u>und</u> funktionellen Gruppen mit Positionsziffer <u>vor</u> dem Stammnamen in alphabetischer Reihenfolge. Verwende bei Mehrfachauftreten funktioneller Gruppen in den Vorsilben oder den Endungen di, tri, tetra, ... und gib alle einzelnen Positionsziffern an. (Ausnahme: Mehrfachbindungen werden stets als Endung im Stammnamen eingebaut)

-OH: *Hydroxy*- -CH Aldehydgruppe: *Formyl*- COOH: *Carboxy*-

6. Esterbenennung (nicht IUPAC-Konform, dennoch verbreitet): Holder Holder Säurerest + "Alkoholrest"/Alkylgruppe + ester = z.B.

Übungsbeispiele:

Methansäureethylester

1. Benenne

2. Begründe, warum es kein Methanon und Ethanon gibt.

Chemisches Reaktionsverhalten behandelter Kohlenwasserstoffverbindungen

Reaktionsverhalten der Alkane,-ene,-ine

a) Verbrennung

Kohlenwasserstoffe sind brennbar. Sie reagieren mit Sauerstoff in einer Redoxreaktion. Man unterscheidet:

- Vollständige Verbrennung zu Kohlendioxid und Wasser
- *Unvollständige Verbrennung zu Kohlendioxid, Wasser, Kohlenmonoxid und Kohlenstoff (= "Ruß")

b) Halogenierung:

- Bei Alkanen: radikalische Substitution

Alkane reagieren mit Halogenen zu Halogenalkanen mit Hilfe von Licht.

Alkan + Halogen -> Halogenalkan + Halogenwasserstoff

Reaktionsprinzip: H-Atome werden radikalisch durch Halogen-Atome ersetzt, daher ist es eine Substitutionsreaktion (lt. substituere: ersetzen)

- Bei Alkenen: elektrophile Addition

Alkene/Alkine reagieren "freiwillig" mit Halogenen ohne weitere Aktivierung. z.B.: Ethen + Chlor -> 1,2-Dichlorethan

Reaktionsprinzip: Die Halogenatome werden an die Doppelbg. oder Dreifachbg. addiert. Die DB wird zur Einfachbindung und die Dreifachbg. zur DB. (Bei Additionsreaktionen entsteht aus zwei Edukten ein Produkt)

*detaillierte Mechanismen

*Oxidationsreihe der Alkohole, Aldehyde, Ketone:

s. auch unter Redox-Reaktionen
Primäre, sekundäre und tertiäre
Alkohole (bestimmt durch die
Anzahl gebundener C-Atome am CAtom mit der Hydroxygruppe)
unterscheiden sich in ihrer
Reaktion mit Oxidationsmitteln.
Ebenso wie Aldehyde und
Ketone. s. Übersicht nächste Seite!

Nachweisreaktion für Aldehyde:

Fehling-Probe: Fehling I-Lösung (enthält Cu²⁺-Ionen) und Fehling II-Lösung (enthält Hydroxid-Ionen) mischen, Prüfsubstanz dazu geben und erhitzen.

positiver Nachweis: Farbumschlag blau -> rot

Esterkondensation- und hydrolyse:

Bei der Esterkondensation (zwei Edukte -> Produkt + Wasser) reagiert eine Carbonsäure mit einem Alkohol zu einem Ester, bei der Esterhydrolyse (ein Edukt + Wasser -> zwei Produkte) läuft diese Reaktion in umgekehrter Richtung ab — es handelt sich um eine reversible Reaktion.

Carbonsäuren als Säuren:

Die Carboxygruppe der Carbonsäure reagiert sauer. Die Abspaltung eines Protons (= H⁺-lon) ist in der Carboxygruppe besonders stark begünstigt.

→ zusätzlicher Elektronensog durch das doppelt gebundene Sauerstoffatom => stark polarisierte Bindung

Physikalische Eigenschaften behandelter Kohlenwasserstoffverbindungen

Es gelten dieselben Zusammenhänge für Siedetemperatur und Löslichkeit wie bereits im Kapitel der ZMK beschrieben.

Beachte bei der Siedetemperatur stets:

- 1. Welche ZMK wirken? Wie stark sind sie?
- 2. Haben die Moleküle eine vergleichbare Masse/Oberfläche? Liegen deutlich mehr Verzweigungen vor?

Beachte bei der Löslichkeit stets:

- 1. Ist das Molekül polar/unpolar?
- 2. Hat es polare/unpolare Bereiche? Überwiegt einer dieser Anteile?
- 3. Welcher Anteil im Molekül kann mit polaren/unpolaren Lösungsmitteln jeweils gut wechselwirken? Was lässt sich daraus für das Lösungsverhalten schlussfolgern.

Übungsbeispiele:

siehe auch Aufgabe 2 und 4 im Kapitel ZMK!

- 1. Formuliere die Reaktionsgleichung zur Veresterung von Propan-2-ol und Essigsäure mit Strukturformeln.
- 2. Folgende Stoffe werden mit einem milden Oxidationsmittel versetzt. Gib jeweils die Strukturformel und den Namen des gegebenenfalls entstehenden Reaktionsprodukts an.
 - a) Pentan-2-ol b) 2-Methylbutan-2-ol c) Propansäure
 - d) 3-Ethylhexan-1-ol
- 3. Gib jeweils das Reaktionsprodukt an und beschreibe die nötigen Reaktionsbedingungen.
 - a) 4-Methylhex-1-en reagiert mit Brom
 - b) Octan reagiert mit Chlor

- 4. 2-Methylpropan-2-ol ist im Gegensatz zu Butan-1-ol nahezu vollständig mit Wasser mischbar. Nimm dazu begründet Stellung.
- 5. Vergleiche und erkläre die Siedetemperaturen von Ethanol, Ethan-1,2-diol, Propan-1,2,3-triol. Erkläre außerdem anhand dieser Beispiele den Begriff "mehrwertiger Alkohol".
- 6. Erkläre die Abfolge bzgl. der Wasserlöslichkeit: Butan-1-ol > Pentan-1-ol
- 7. Gib mithilfe der Moleküle an, welcher Stoff eine höhere Siedetemperatur hat.

Butansäure Pentan-1-ol

Protonenübergänge - Säuren und Basen

Definition nach Brönsted:

Säuren sind Protonendonatoren – sie können Protonen (= H⁺) abgeben

Basen sind Protonenakzeptoren – sie können Protonen aufnehmen

Ampholyte sind Teilchen, die je nach Reaktionspartner sowohl als Säure als auch als Base reagieren können.

Wichtige Vertreter:

Salzsäure = HCl(aq); Säurerest-Anion: Chlorid = Cl⁻

Kohlensäure = H_2CO_3 [eigentlich: $CO_2(aq)$]; Säurerest-Anion: Carbonat = CO_3^{2-}

Schwefelsäure = H_2SO_4 ; Säurerest-Anion: Sulfat = SO_4^2 -

Salpetersäure = HNO₃; Säurerest-Anion: Nitrat = NO₃⁻

Phosphorsäure = H_3PO_4 ; Säurerest-Anion: Phosphat = PO_4^{3-} Essigsäure = H_3CCOOH ; Säurerest-Anion: Acetat = H_3CCOO^{-}

Natronlauge = NaOH(aq)

Kalilauge = KOH(aq)

 $Kalkwasser = Ca(OH)_2$ (aq)

Ammoniakwasser = NH_3 (aq)

Protolyse(-reaktion)

Bei der Protolyse wird auf Teilchenebene eine Proton von einer Säure auf eine Base übertragen.

*Dabei liegt immer ein korrespondierendes Säure-Base-Paar vor:

Säure HA reagiert zu korrespondierender Base A

Base B reagiert zu korrespondierender Säure HB⁺

Saure und basische Lösungen

Löst man eine Säure in Wasser, so gibt diese Protonen an das Wassermolekül ab und es entstehen Oxonium-Ionen (H_3O^+) und Säurerest-Anionen. Alle sauren Lösungen enthalten daher Oxonium-Ionen.

Löst man eine Base in Wasser, so nimmt diese Protonen vom Wassermolekül auf und es entstehen Hydroxid-Ionen OH⁻. Alle basischen Lösungen (=Laugen) enthalten daher Hydroxid-Ionen.

Neutralisationsreaktion

Saure und basische Lösungen neutralisieren sich beim Mischen: Dabei reagieren die Oxonium-Ionen mit den Hydroxid-Ionen zu Wassermolekülen und Salz.

Beispiel: Salzsäure reagiert mit Natronlauge (zu einer wässrigen Natriumchloridlösung).

$$\underbrace{H_3O^+ + C\Gamma}_{saure\ Lsg.} + \underbrace{Na^+ + OH^-}_{basis\acute{c}he\ Lsg.} + \underbrace{2\ H_2O + Na^+ + C\Gamma}_{Salz\ Lsg.}$$

pH-Wert und Indikatoren

Der **pH-Wert** ist ein quantitatives Maß für die Oxoniumionen-Konzentration einer Lösung. Die pH-Skala erstreckt sich von 0 (stark sauer) über 7 (neutral) bis 14 (stark basisch). *Es gilt: pH = $-\lg[H_3O^+]$

Indikatoren sind Farbstoffe, deren Moleküle je nach pH-Wert eine andere Farbigkeit erzeugen.

*Indikator	Basisch	Neutral	Sauer
Lackmus	Blau	Lila	Rot
Bromthymolblau	Blau	Grün	Gelb
Phenolphthalein	Pink	Farblos	Farblos

*Titration

Prinzip: Zu einem bestimmten Volumen Säure (bzw. Lauge) unbekannter Konzentration wird nach Zusatz eines Indikators mit einer Bürette langsam Lauge (bzw. Säure) bekannter Konzentration (= Maßlösung) gegeben, bis der Indikator umschlägt → Äquivalenzpunkt. Aus dem verbrauchten Volumen der Maßlösung kann die Konzentration der titrierten Säure (bzw. Lauge) errechnet werden.

Berechnungen zur Titration*

Übungsbeispiele:

8

- 1. Natriumnitrat und Schwefelsäure werden erhitzt. Es entsteht unter anderem Salpetersäure im Rahmen einer Protolyse.
 - a) Formuliere die Reaktionsgleichung.
 - b) Erkläre anhand der Reaktionsgleichung die Begriffe Säure, Base und Protolyse.
 - c) Gib die korrespondierenden Säure/Base-Paare an.
- 2. Kalilauge, die mit dem Indikator Bromthymolblau versetzt wurde, wird mit Schwefelsäure vermischt. Die Lösung erwärmt sich und die Farbe des Indikators verändert sich.
 - a) Formuliere die Reaktionsgleichung.
 - b) Benenne den Reaktionstyp.
 - c) Nenne die Farbe des Indikators vor und nach der Reaktion.
- 3. Hydrogencarbonat-lonen (HCO₃⁻) ist ein Ampholyt. Erkläre dies auch mit Hilfe geeigneter Reaktionsgleichungen.

Elektronenübergänge – Reduktion und Oxidation

Grundlagen

Bei einer Redoxreaktion findet ein Elektronenübergang von einem Elektronendonator auf einen Elektronenakzeptor statt.

Oxidation: Elektronenabgabe/Oxidationszahl (OZ) steigt

Reduktion: Elektronenaufnahme/OZ reduziert sich

Oxidationsmittel: oxidiert das Edukt, ist selbst also Elektronenakzeptor Reduktionsmittel: reduziert das Edukt, ist selbst also Elektronendonator

Oxidationszahl

Die Oxidationszahl (OZ) gibt die Ladung an, die ein Atom hätte, wenn alle Elektronen einer Bindung dem elektronegativeren Partner zugeordnet werden.

Regeln zur Bestimmung der OZ:

- 1. Elemente erhalten stets die Oxidationszahl 0.
- 2. Atom-lonen haben eine Oxidationszahl, die der Ionenladungszahl entspricht.
- 3. Die Summe der OZ in einem beliebigen Molekül ist 0.
- 4. Die Summe der OZ in einem Molekül-Ion entspricht der Ladungszahl.
- 5. Es gelten zudem folgende Regeln mit abnehmender Priorität:
- !!!! a) Metall-Atome erhalten positive OZ (siehe dazu PSE), Fluor-Atome OZ = -I
- !!! b) Wasserstoff-Atome OZ = + I; Ausnahmen z.B.: LiH, CaH₂
- !! c) Sauerstoff-Atome OZ = II; Ausnahmen wegen a)/b): OF₂, H₂O₂,...
- ! d) Chlor-, Brom- und Iod-Atome OZ= I , Ausnahmen z.B.: BrO₃ wegen c)

Redoxgleichung aufstellen

Beispiel aus der AC:

Kupfer reagiert mit konzentrierter Salpetersäure zu Kupfer(II)-nitrat und Stickstoffdioxid.

1. Edukte und Produkte notieren; Oxidationszahlen ermitteln; Oxidation/Reduktion identifizieren

2. Ausgleich der Oxidationszahländerung durch Elektronen

Ox.: Cu \rightarrow Cu²⁺ + 2e⁻ Red.: HNO₃ + e⁻ \rightarrow NO₂

3. Ladungsausgleich durch Oxonium-Ionen im Sauren bzw. Hydroxid-Ionen im Basischen

Ox.: Cu
$$\rightarrow$$
 Cu²⁺ + 2e²
Red.: HNO₃ + e + H₃O⁺ \rightarrow NO₂

4. Ausgleich der Stoffbilanz mit Wasser.

Ox.: Cu $\rightarrow Cu^{2+} + 2e^{-}$ Red.: $HNO_3 + e^{-} + H_3O^{+} \rightarrow NO_2 + 2H_2O$

5. Ausgleich der Elektronenzahl (auf kgV bringen) und Zusammenfassung zur Gesamtgleichung, dabei ggf. vereinfachen.

Ox.: Cu $\rightarrow \text{Cu}^{2+} + 2e^{-}$ Red.: $\text{HNO}_3 + e^{-} + \text{H}_3\text{O}^+ \rightarrow \text{NO}_2 + 2\text{H}_2\text{O} \mid \cdot 2$ Redox: Cu + $2\text{HNO}_3 + 2\text{H}_3\text{O}^+ \rightarrow \text{Cu}^{2+} + 2\text{NO}_2 + 4\text{H}_2\text{O}$

Beispiel aus der OC (*musst nicht selber auf Produkte kommen, werden gegeben):

Fiktives Beispiel: Butan-1-ol reagiert mit Permanganat-Ionen (MnO_4^-) im Basischen. Dabei entsteht eine grüne Lösung von Manganat-Ionen (MnO_4^{-2-}) und Butanal.

Ox.:
$$R - CH_2 - OH + 2OH^ \rightarrow R - C^ + 2e^- + 2H_2O$$

 $+ VII$ $+$

Übungsbeispiele:

- 1. Gibt man violettes Kaliumpermanganat und Kochsalz in saurer Lösung zusammen, entsteht grünes Chlorgas und eine farblose Lösung. Es handelt sich dabei um eine Redoxreaktion, bei der Permanganat-Ionen (MnO₄) zu Mangan(II)-Ionen und Chlorid-Ionen zu elementarem Chlor reagieren.
 - a) Bestimme die Oxidationszahlen aller Atome in den genannten Teilchen.
 - b) Formuliere die Teilgleichungen für die Oxidation und die Reduktion.
 - c) Nenne das Oxidationsmittel und das Reduktionsmittel.
- 2. Erhitzt man Bleioxid (PbO₂) auf Holzkohle (C), so bildet sich Blei und ein farbloses Gas. Stelle die Reaktionsgleichungen für die Teilreaktionen und die Gesamtreaktion auf.
- 3. Propan-2-ol wird mit Kupfer(II)-oxid im Sauren oxidiert. Dabei entsteht elementares Kupfer und Propan-2-on.